Affiliation:
1. Unit of Scientific Research, Applied College, Qassim University, Buraydah 52571, Saudi Arabia
2. Department of Computer Science, College of Computer, Qassim University, Buraydah 51452, Saudi Arabia
Abstract
In the dynamic and ever-evolving realm of network security, the ability to accurately identify and classify portscan attacks both inside and outside networks is of paramount importance. This study delves into the underexplored potential of fusing graph theory with machine learning models to elevate their anomaly detection capabilities in the context of industrial Internet of things (IIoT) network data analysis. We employed a comprehensive experimental approach, encompassing data preprocessing, visualization, feature analysis, and machine learning model comparison, to assess the efficacy of graph theory representation in improving classification accuracy. More specifically, we converted network traffic data into a graph-based representation, where nodes represent devices and edges represent communication instances. We then incorporated these graph features into our machine learning models. Our findings reveal that incorporating graph theory into the analysis of network data results in a modest-yet-meaningful improvement in the performance of the tested machine learning models, including logistic regression, support vector machines, and K-means clustering. These results underscore the significance of graph theory representation in bolstering the discriminative capabilities of machine learning algorithms when applied to network data.
Funder
research chair of Prince Faisal for Artificial Intelligence
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献