Blockchain-Assisted Machine Learning with Hybrid Metaheuristics-Empowered Cyber Attack Detection and Classification Model

Author:

Albakri Ashwag1ORCID,Alabdullah Bayan2,Alhayan Fatimah2

Affiliation:

1. Department of Computer Science, College of Computer Science & Information Technology, Jazan University, Jazan 45142, Saudi Arabia

2. Department of Information Systems, College of Computer and Information Sciences, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia

Abstract

Cyber attack detection is the process of detecting and responding to malicious or unauthorized activities in networks, computer systems, and digital environments. The objective is to identify these attacks early, safeguard sensitive data, and minimize the potential damage. An intrusion detection system (IDS) is a cybersecurity tool mainly designed to monitor system activities or network traffic to detect and respond to malicious or suspicious behaviors that may indicate a cyber attack. IDSs that use machine learning (ML) and deep learning (DL) have played a pivotal role in helping organizations identify and respond to security risks in a prompt manner. ML and DL techniques can analyze large amounts of information and detect patterns that may indicate the presence of malicious or cyber attack activities. Therefore, this study focuses on the design of blockchain-assisted hybrid metaheuristics with a machine learning-based cyber attack detection and classification (BHMML-CADC) algorithm. The BHMML-CADC method focuses on the accurate recognition and classification of cyber attacks. Moreover, the BHMML-CADC technique applies Ethereum BC for attack detection. In addition, a hybrid enhanced glowworm swarm optimization (HEGSO) system is utilized for feature selection (FS). Moreover, cyber attacks can be identified with the design of a quasi-recurrent neural network (QRNN) model. Finally, hunter–prey optimization (HPO) algorithm is used for the optimal selection of the QRNN parameters. The experimental outcomes of the BHMML-CADC system were validated on the benchmark BoT-IoT dataset. The wide-ranging simulation analysis illustrates the superior performance of the BHMML-CADC method over other algorithms, with a maximum accuracy of 99.74%.

Funder

Princess Nourah bint Abdulrahman University

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3