Optimal Design of Hybrid Optimization Technique for Balancing Inverted Pendulum System

Author:

Ebrahim M. A.1,Mousa M. E.2,Said E. M.3,Mahmoud Zaky M.2,Kotb S. A.2

Affiliation:

1. Department of Electrical Engineering, Faculty of Engineering at Shoubra, Benha University, Cairo, EGYPT

2. Egyptian Second Research Reactor, Egyptian Atomic Energy Authority, Cairo, EGYPT

3. Department of Electrical Engineering, Faculty of Engineering at Shoubra, Benha University, Cairo, EGYPT, also with Electrical Engineering Department, Higher Technological Institute, Cairo, EGYPT

Abstract

Inverted Pendulum system is one of the most exciting problems in control theory. In this research work, a new variant of Grey Wolf optimizer (GWO) via Particle Swarm Optimization (PSO) based on Adaptive Constants (AC) is proposed. The proposed technique (GWO/PSO-AC) is tested via twenty-three benchmark functions and compared to GWO based on PSO without adaptive constants (GWO/PSO). The suggested technique shows superiority in determining the optimal solutions for the well-established benchmark test functions with high computing performance compared to alternative techniques. The proposed GWO/PSO-AC technique, is employed to tune the parameters of the Variable Structure Adaptive Fuzzy (VSAF) controller in addition to the Reduced Linear Quadratic Regulator (RLQR) suggested by the authors. Both controllers are used to stabilize the cart position and to swing up the pendulum angle. The RLQR has an advantage over regular LQR, which is, the numberof the required parameters to obtain the required LQR gains is reduced. The proposed technique is compared with two optimization techniques. The proposed technique achieves high performance for both the cart position and the pendulum angle. The attained results are very promising.

Publisher

World Scientific and Engineering Academy and Society (WSEAS)

Subject

Computer Science Applications,Control and Systems Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3