Enabling of CMOS Circuit using Dual Material Gate Germanium Pocket Induced FDSOI MOSFET

Author:

Singh Abhay Pratap1,Mishra Vimal Kumar1,Akhter Shamim1

Affiliation:

1. Electronics and Communication Engineering, Jaypee Institute of Information Technology, Noida, INDIA

Abstract

This research presents a comparison of the electrical performance of a double-side induced germanium-pocket (IGP) FD-SOI MOSFET and a dual material gate IGPFDSOI (DIGPFDSOI). The electrical performance is reviewed by comparing the device parameters like drain current, band diagram, lateral electric field, surface potential, and work function of the gate material. The proposed structure exhibits excellent characteristics compared to the IGPFDSOI MOSFET. The proposed structure has a greater Ion/Ioff ratio, a lower subthreshold slope, reduced capacitance, and an elevated cut-off frequency. The implementation of a dual metal gate is considered a superior method in comparison to FD-SOI technology because it effectively reduces the negative effects of scaling. A study is being done to analyze the differences in the work functions of metal gates to evaluate the effectiveness of the proposed construction. The comparison evaluation shows that the suggested design can be used for both digital and analog tasks because it has a higher switching frequency and a better cut-off frequency. Apart from this, the proposed structure can also be implemented without making substantial changes to the conventional FD-SOI MOSFET fabrication process flow. Here, we are using n-type and p-type DIGPFDSOI MOSFETs to make a CMOS converter circuit. Sentaurus TCAD is used to simulate and analyze the performance of the proposed structure.

Publisher

World Scientific and Engineering Academy and Society (WSEAS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3