Networked Iterative Learning Fault Diagnosis Algorithm for Systems with Sensor Random Packet Losses, Time-varying Delays, Limited Communication and Actuator Failure : Application to the Hydroturbine Governor System

Author:

Herve Samba Aime1,Aurelien Yeremou Tamtsia1,Judith Hermine Som Idellette1,Leandre Nneme Nneme2

Affiliation:

1. Department of Industrial Robotics, University of Douala Po. Box 1872, Douala Cameroon

2. Department of Electrical and Electronics Engineering, University of Douala Po. Box 1872, Douala Cameroon

Abstract

An iterative learning fault diagnosis (ILFD) algorithm for networked control systems (NCSs) subject to random packet losses, time-varying delays, limited communication and actuator failure is proposed in this paper. Firstly, in order to evaluate the effect of fault on system between every iteration, the information of state error and information of fault tracking estimator from the preceding iteration are used to improve the fault estimation achievement in the actual iteration. The state variable, the Bernoulli process of random packet losses, network communication delay, limited communication and actuator failure are introduced to establish an extended statespace model of the system. Secondly combining Lyapunov stability theory for linear repetitive processes and linear matrix inequality (LMI) technique, new sufficient condition for the existence of an iterative learning fault diagnosis is established. Finally, the feasibility and effectiveness of the proposed design method is illustrated on a dynamic hydroturbine governing system model based on Matlab/Simulink and TrueTime toolbox

Publisher

World Scientific and Engineering Academy and Society (WSEAS)

Subject

Artificial Intelligence,General Mathematics,Control and Systems Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3