Packet Loss Measurement Based on Sampled Flow

Author:

Lan Haoliang,Xu Jie,Wang Qun,Ding Wei

Abstract

This paper is devoted to further strengthening, in the current asymmetric information environment, the informed level of operators about network performance. Specifically, in view of the burst and perishability of a packet loss event, to better meet the real-time requirements of current high-speed backbone performance monitoring, a model for Packet Loss Measurement at the access network boundary Based on Sampled Flow (PLMBSF) is presented in this paper under the premise of both cost and real-time. The model overcomes problems such as the inability of previous estimation to distinguish between packet losses before and after the monitoring point, deployment difficulties and cooperative operation consistency. Drawing support from the Mathis equation and regression analysis, the measurement for packet losses before and after the monitoring point can be realized when using only the sampled flows generated by the access network boundary equipment. The comparison results with the trace-based passive packet loss measurement show that although the proposed model is easily affected by factors such as flow length, loss rate, sampling rate, the overall accuracy is still within the acceptable range. In addition, the proposed model PLMBSF, compared with the trace-based loss measurement is only different in the input data granularity. Therefore, PLMBSF and its advantages are also applicable to aggregated traffic.

Funder

JSPIGKZ

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3