Comparison of Logistic Regression and Discriminant Analysis for Classification of Multicollinearity Data

Author:

Araveeporn Autcha1

Affiliation:

1. Department of Statistics, School of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, THAILAND

Abstract

The objective of this study is to concentrate on the classification method of the logistic regression and the discriminant analysis by using the simulation dataset and the liver patients as the actual data. These datasets are used the binary dependent variable depending on the correlated independent variables or called multicollinearity data. The standard classification method is logistic regression, which uses the logit function’s probability to conduct the dichotomous dependent variable. The iteration process can be solved to estimate logit function parameters and explain the relationship between a dependent binary variable and independent variables. Discriminant analysis is a powerful classification based on linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), and regularized discriminant analysis (RDA). These methods consider the decision boundaries by building a classifier model on the multivariate normal distribution. LDA defines the standard covariance matrix, but QDA has an individual covariance matrix. RDA extends from QDA by setting the regularized parameter to estimate the covariance matrix. In the case of the simulation study, the independent variables are generated by defining the constant correlation on the multivariate normal distribution that made the multicollinearity problem. Then the binary response variable can be approximated from the logit function. For application to actual data, we expressed the classification of type liver and non-liver patients as the dependent variables and obtained patient personal information on the nine independent variables. The highest average percentage of accuracy determines the performance of these methods. The results have shown that the logistic regression was successful when using small independent variables, but the RDA performed when using large independent variables.

Publisher

World Scientific and Engineering Academy and Society (WSEAS)

Subject

General Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3