Evaluating Feature Selection Algorithms for Machine Learning-Based Musical Instrument Identification in Monophonic Recordings

Author:

Yücel İsmet Emre1ORCID,Yurtsever Ulaş2ORCID

Affiliation:

1. Sakarya Üniversitesi Devlet Konservatuvarı

2. SAKARYA ÜNİVERSİTESİ, BİLGİSAYAR VE BİLİŞİM BİLİMLERİ FAKÜLTESİ, BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ

Abstract

Musical instrument identification (MII) research has been studied as a subfield of the Music Information Retrieval (MIR) field. Conventional MII models are developed based on hierarchical models representing musical instrument families. However, for MII models to be used in the field of music production, they should be developed based on the arrangement-based functions of instruments in musical styles rather than these hierarchical models. This study investigates how the performance of machine learning based classification algorithms for Guitar, Bass guitar and Drum classes changes with different feature selection algorithms, considering a popular music production scenario. To determine the effect of feature statistics on model performance, Minimum Redundancy Maximum Relevance (mRMR), Chi-sqaure (Chi2), ReliefF, Analysis of Variance (ANOVA) and Kruskal Wallis feature selection algorithms were used. In the end, the neural network algorithm with wide hyperparameters (WNN) achieved the best classification accuracy (91.4%) when using the first 20 statistics suggested by the mRMR and ReliefF feature selection algorithms.

Publisher

Sakarya University Journal of Computer and Information Sciences

Reference72 articles.

1. [1] A. Ghosh, A. Pal, D. Sil, and S. Palit, “Music Instrument Identification Based on a 2-D Representation,” in 3rd International Conference on Electrical, Electronics, Communication, Computer Technologies and Optimization Techniques, ICEECCOT 2018, Institute of Electrical and Electronics Engineers Inc., Dec. 2018, pp. 509–513. doi: 10.1109/ICEECCOT43722.2018.9001486.

2. [2] U. Shukla, U. Tiwari, V. Chawla, and S. Tiwari, “Instrument classification using image based transfer learning,” in Proceedings of the 2020 International Conference on Computing, Communication and Security, ICCCS 2020, Institute of Electrical and Electronics Engineers Inc., Oct. 2020. doi: 10.1109/ICCCS49678.2020.9277366.

3. [3] I. Kaminskyj and A. Materka, “AUTOMATIC SOURCE IDENTIFICATION OF MONOPHONIC MUSICAL INSTRUMENT SOUNDS,” Proceedings of the Australian and New Zealand Conference on Intelligent Information Systems, 1995.

4. [4] I. Kaminskyj and P. Voumard, “Enhanced automatic source identification of monophonic musical instrument sounds,” Proceedings of the Australian and New Zealand Conference on Intelligent Information Systems, no. November, pp. 76–79, 1996.

5. [5] K. D. Martin and Y. E. Kim, “2pMU9. Musical instrument identification: A pattern-recognition approach *,” in Presented at the 136th meeting of the Acoustical Society of America, Newyork, 1998.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3