Estimation of the Ambit of Breast Cancer with a Modified Resnet Analysis Using Machine Learning Approach

Author:

Narayanappa C. K.1,Poornima G. R.,2,Hiremath Basavaraj V.1

Affiliation:

1. Department of Medical Electronics & Engineering, Ramaiah Institute of Technology, Bengaluru, INDIA

2. Department of Electronics & Communication Engineering, Sri Venkateshwara College of Engineering, Bengaluru, INDIA

Abstract

Breast Cancer has been one of the most common reasons for mortality and morbidity among the females around the world especially in developing countries. In this regard, Mammography is a popular screening technique for breast cancer diagnosis so as to label the existence of cancerous cells. The present work encompasses the design and development of a M-ResNet (Modified ResNet) approach so as to classify the breast cancer into benign and malignant conditions with the inclusions for supervised classification models with the training of both upper as well as the lower layers of the designed networks. The efficacy of the developed approach was evaluated using various performance evaluators such as those of sensitivity, specificity, accuracy and F1-Score. Bi-Rads score was used as a basis for the classification process wherein a score of 0-3 correlated to benign and it is non-cancerous nature of tissues whereas malignancy was denoted by a score of 4 and above. InBreast dataset, a publicly available online dataset with 112 breast images were used for the evaluation of the developed paradigm. The present paradigm portrayed an accuracy of 96.43% with Area Under the Curve (AUC) of 95.63%.

Publisher

World Scientific and Engineering Academy and Society (WSEAS)

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3