Double-View Matching Network for Few-Shot Learning to Classify Covid-19 in X-ray images

Author:

Szűcs Gábor,Németh Marcell

Abstract

The research topic presented in this paper belongs to small training data problem in machine learning (especially in deep learning), it intends to help the work of those working in medicine by analyzing pathological X-ray recordings, using only very few images. This scenario is a particularly hot issue nowadays: how could a new disease for which only limited data are available be diagnosed using features of previous diseases? In this problem, so-called few-shot learning, the difficulty of the classification task is to learn the unique feature characteristics associated with the classes. Although there are solutions, but if the images come from different views, they will not handle these views well. We proposed an improved method, so-called Double-View Matching Network (DVMN based on the deep neural network), which solves the few-shot learning problem as well as the different views of the pathological recordings in the images. The main contribution of this is the convolutional neural network for feature extraction and handling the multi-view in image representation. Our method was tested in the classification of images showing unknown COVID-19 symptoms in an environment designed for learning a few samples, with prior meta-learning on images of other diseases only. The results show that DVMN reaches better accuracy on multi-view dataset than simple Matching Network without multi-view handling.

Publisher

Infocommunications Journal

Subject

Electrical and Electronic Engineering,General Computer Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3