3D Digital Model of Folk Dance Based on Few-Shot Learning and Gesture Recognition

Author:

Zhang Ning1ORCID

Affiliation:

1. Shandong University of Arts, Jinan 250000, China

Abstract

Folk dance is a very unique local culture in China, and dances in different regions have different characteristics. With the development of 3D digital technology and human gesture recognition technology, how to apply it in folk dance is a question worth thinking about. So, this paper recognizes and collects dance movements through human body detection and tracking technology in human gesture recognition technology. Then, this paper writes the data into the AAM model for 3D digital modeling and retains the information by integrating the manifold ordering. Finally, this paper designs a folk dance learning method combined with the Few-Shot learning method. This paper also designs a data set test experiment, an algorithm data set comparison experiment, and a target matching algorithm comparison experiment to optimize the learning method designed in this paper. The final results show that the Few-Shot learning method based on gesture recognition 3D digital modeling of folk dances designed in this paper reduces the learning time by 17% compared with the traditional folk dance learning methods. And the Few-Shot learning method designed in this paper improves the dance action score by 14% compared with the traditional learning method.

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Reference21 articles.

1. A Reversible Automatic Selection Normalization (RASN) Deep Network for Predicting in the Smart Agriculture System

2. A novel group recommendation model with two-stage deep learning;Z. Huang;IEEE Transactions on Systems, Man, and Cybernetics: Systems,2021

3. A Hand Gesture Recognition Framework and Wearable Gesture-Based Interaction Prototype for Mobile Devices

4. A wearable gesture recognition device for detecting muscular activities based on air-pressure sensors;P. G. Jung;IEEE Transactions on Industrial Informatics,2017

5. Neural Network Based Indian Folk Dance Song Classification Using MFCC and LPC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3