Extraction of plant parenchyma by computer image processing technology

Author:

Jiangfeng Cai,Yikai Dong

Abstract

People are increasingly using different kinds of plant products, such as wood, but there are many kinds of wood and it is difficult to analyze and identify them, so how to use auxiliary equipment to analyze wood and achieve the goal of accurate wood identification without damaging the product itself has become one of the important problems to be solved in the field of wood research. The axial thin-walled tissue has important wood grain information and it is one of the important features for wood identification. In this paper, we studied the microscopic images of broadleaf wood, and obtained the microstructure images of wood cross-section by photographing, and extracted the complete axial thin-walled tissue morphology of wood by using computer image processing technology and other ways about computer vision. Firstly, the axial thin-walled wood images were de-noised to eliminate some noise effects, so as to facilitate the separation of the axial thin-walled wood; then the images were processed by mathematical morphology to successfully extract the axial thin-walled wood and duct morphology from the cross-sectional images of broadleaf wood; finally, the axial thin-walled wood was separated from the duct by calculating the area of the closed area.

Publisher

Krasnoyarsk Science and Technology City Hall

Reference30 articles.

1. Lin Y., Chen D., Liang S., Xu Z., Qiu Y., Zhang J., Liu X. Color classification of wooden boards based on machine vision and the clustering algorithm. Applied Sciences. 2020; 10(19): 6816.

2. Petrosian O., Shi L., Li Y., Gao H. Moving information horizon approach for dynamic game models. Mathematics. 2019; 7(12): 1239.

3. Weilong, H., Weijun, H., Yuqi, Y., Hui, S., Yanyou, W., Yuehang, S., & Xiaobin, L. Improved left- and right-hand tracker using computer vision. Student scientific research. 2022; 3: 21.

4. Hermanson J. C., Wiedenhoeft A. C. A brief review of machine vision in the context of automated wood identification systems. IAWA journal. 2011; 32(2): 233-250.

5. Zhao C., Blekanov I. Two Towers Collaborative Filtering Algorithm for Movie Recommendation. Management processes and sustainability. 2021; 8(1): 397-401.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Improved plant parenchyma extraction technology using artificial intelligence algorithms;Современные инновации, системы и технологии - Modern Innovations, Systems and Technologies;2022-12-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3