Improved plant parenchyma extraction technology using artificial intelligence algorithms

Author:

Jike Chen,Qian Zhao

Abstract

The previous studies have described the extraction of plant parenchyma by computer image processing technology, and the purpose of this paper is to verify the effectiveness of the algorithm., this paper implements the algorithm by using Matlab language, and designs several groups of experiments. The experimental results show that: when denoising, using 9*9 as a template to perform median filtering on the image has a better effect, and block binarization facilitates the extraction of axial parenchyma; when processing mathematical morphology, using 3*3 Axial parenchyma and vessel morphology can be successfully extracted from cross-sectional images of broad-leaved wood after dilation of the image by cross-shaped structuring elements and erosion of images by disc-shaped structuring elements with radii ranging from 1 to 10 When calculating the area threshold of the closed area, the area threshold is determined by using 8 domains to mark the area of the closed area and using the area histogram, so that the axial parenchyma can be better separated from the catheter. At present, the method has been experimented in 10 different tree species, all of which have achieved good results. This also fully proves the effectiveness of the artificial intelligence algorithm. The implementation of the algorithm also lays the foundation for future research on intelligent wood recognition based on axial thin-walled tissue morphology; it provides a shortcut to measure the content of axial thin-walled tissue in different tree species; and it is a prelude to the development of an image-based wood recognition system for axial thin-walled tissue.

Publisher

Krasnoyarsk Science and Technology City Hall

Reference49 articles.

1. Jiangfeng C., Yikai D. Extraction of plant parenchyma by computer image processing technology. Informatics. Economics. Management. 2022; 1(2): 0134-0167. https://doi.org/ 10.47813/2782-5280-2022-1-2-0134-0167

2. Jiang Z. Development of IT Industry in China in the New Age: Doctoral dissertation. 2008.

3. He W., Hu W., Yang Y., Shen H., Wu Y., Song Y., Liu X. Improved left- and right-hand tracker using computer vision. Student research. 2022: 21-29.

4. A brief review of machine vision in the context of automated wood identification systems;J. C.;IAWA journal,2011

5. Zhao C., Blekanov I. Two Towers Collaborative Filtering Algorithm for Movie Recommendation. Management processes and sustainability. 2021; 8(1): 397-401.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3