COMPARATIVE FLUX BALANCE ANALYSES OF SERINE ALKALINE PROTEASE OVERPRODUCTION IN Bacillus subtilis AT GENOME AND SMALL SCALE

Author:

KOCABAŞ Pınar1ORCID

Affiliation:

1. EGE UNIVERSITY, FACULTY OF ENGINEERING

Abstract

This work aims to conduct flux balance analysis of serine alkaline protease overproduction in Bacillus subtilis using enzyme-constrained genome scale model and to compare the results with fluxes obtained from a smaller, bioreaction-based model. Fluxes of the enzyme constraint genome scale model were calculated using CobraToolbox v3.0 and compared with those of bioreaction-based model for the specific growth rate of zero. The active reaction number first increased and then remained constant with specific growth rate for enzyme constrained genome scale model. The SAP synthesis flux increased with a decrease in specific growth rate for both models. The TCA cycle was active for both models, but with lower fluxes for enzyme-constrained genome scale model. Anaplerotic reactions were active only for bioreaction-based model. Glycolysis pathway fluxes were active for enzyme-constrained genome scale model, meanwhile gluconeogenesis pathway fluxes were active for bioreaction-based model. Oxidative pentose phosphate pathway was inactive for both models and generally higher pentose phosphate pathway fluxes were obtained using bioreaction-based model. The fluxes toward amino acid synthesis pathways and serine alkaline protease synthesis were higher with bioreaction-based model. Since TCA cycle fluxes were lower with enzyme constrained genome scale model, ATP synthesis was lower with enzyme constrained genome scale model compared to bioreaction-based model. For both models, active pathways were the same for TCA cycle, pentose phosphate pathway, amino acid synthesis pathways except glycolysis pathway. The results showed that bioreaction-based model gave more sound results compared to enzyme constrained genome scale model since gluconeogenesis should be active with the carbon source of citrate.

Publisher

Anadolu Universitesi Bilim ve Teknoloji Dergisi C : Yasam Bilimleri ve Biyoteknoloji

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3