Polycrystalline Diamond Coating on Orthopaedic Implants: Realization, and Role of Surface Topology and Chemistry in Adsorption of Proteins and Cell Proliferation

Author:

Zalieckas Justas1ORCID,Mondragon Ivan Rios1,Pobedinskas Paulius2,Kristoffersen Arne Skodvin1,Mohamed-Ahmed Samih1,Gjerde Cecilie1,Høl Paul Johan31,Hallan Geir31,Furnes Ove Nord31,Cimpan Mihaela-Roxana1,Haenen Ken2,Holst Bodil1,Greve Martin Møller1

Affiliation:

1. University of Bergen

2. Hasselt University

3. Haukeland University Hospital

Abstract

Polycrystalline diamond has the potential to improve the osseointegration of orthopaedic implants compared to conventional materials such as titanium. However, despite the excellent biocompatibility and superior mechanical properties, the major challenge of using diamond for implants, such as those used for hip arthroplasty, is the limitations of microwave plasma chemical vapor deposition (CVD) techniques to synthesize diamond on complex-shaped objects. Here, for the first time we demonstrate diamond growth on titanium acetabular shells using surface wave plasma CVD method. Polycrystalline diamond coatings were synthesized at low temperatures (~400 °C) on three types of acetabular shells with different surface structure and porosity. We achieved the growth of diamond on highly porous surfaces designed to mimic the structure of the trabecular bone and improve osseointegration. Biocompatibility was investigated on nanocrystalline diamond (NCD) and ultrananocrystalline diamond (UNCD) coatings terminated either with hydrogen or oxygen. To understand the role of diamond surface topology and chemistry in the attachment and proliferation of mammalian cells, we investigated the adsorption of extracellular matrix (ECM) proteins, and monitored the metabolic activity of fibroblasts, osteoblasts, and bone marrow-derived mesenchymal stem cells (MSCs). The interaction of bovine serum albumin (BSA) and Type I collagen with the diamond surfaces was investigated by confocal fluorescence lifetime imaging microscopy (FLIM). We found that the proliferation of osteogenic cells was better on hydrogen terminated UNCD than on the oxygen terminated counterpart. These findings correlated with the behaviour of collagen on diamond substrates observed by FLIM. Hydrogen terminated UNCD provided better adhesion and proliferation of osteogenic cells, compared to titanium, while growth of fibroblasts was poorest on hydrogen terminated NCD and MSCs behaved similarly on all tested surfaces. These results open new opportunities for application of diamond coatings on orthopaedic implants.

Publisher

American Chemical Society (ACS)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3