Uni-Mol: A Universal 3D Molecular Representation Learning Framework

Author:

Zhou Gengmo1,Gao Zhifeng1,Ding Qiankun1,Zheng Hang1,Xu Hongteng2,Wei Zhewei2,Zhang Linfeng1,Ke Guolin1ORCID

Affiliation:

1. DP Technology

2. Renmin University of China

Abstract

Molecular representation learning (MRL) has gained tremendous attention due to its critical role in learning from limited supervised data for applications like drug design. In most MRL methods, molecules are treated as 1D sequential tokens or 2D topology graphs, limiting their ability to incorporate 3D information for downstream tasks and, in particular, making it almost impossible for 3D geometry prediction or generation. Herein, we propose Uni-Mol, a universal MRL framework that significantly enlarges the representation ability and application scope of MRL schemes. Uni-Mol is composed of two models with the same SE(3)-equivariant transformer architecture: a molecular pretraining model trained by 209M molecular conformations; a pocket pretraining model trained by 3M candidate protein pocket data. The two models are used independently for separate tasks, and are combined when used in protein-ligand binding tasks. By properly incorporating 3D information, Uni-Mol outperforms SOTA in 14/15 molecular property prediction tasks. Moreover, Uni-Mol achieves superior performance in 3D spatial tasks, including protein-ligand binding pose prediction, molecular conformation generation, etc. Finally, we show that Uni-Mol can be successfully applied to the tasks with few-shot data like pocket druggability prediction. The model and data will be made publicly available at \url{https://github.com/dptech-corp/Uni-Mol}

Publisher

American Chemical Society (ACS)

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3