Structure prediction of protein-ligand complexes from sequence information with Umol

Author:

Bryant PatrickORCID,Kelkar Atharva,Guljas Andrea,Clementi CeciliaORCID,Noé FrankORCID

Abstract

AbstractProtein-ligand docking is an established tool in drug discovery and development to narrow down potential therapeutics for experimental testing. However, a high-quality protein structure is required and often the protein is treated as fully or partially rigid. Here we develop an AI system that can predict the fully flexible all-atom structure of protein-ligand complexes directly from sequence information. We find that classical docking methods are still superior, but depend upon having crystal structures of the target protein. In addition to predicting flexible all-atom structures, predicted confidence metrics (plDDT) can be used to select accurate predictions as well as to distinguish between strong and weak binders. The advances presented here suggest that the goal of AI-based drug discovery is one step closer, but there is still a way to go to grasp the complexity of protein-ligand interactions fully. Umol is available at: https://github.com/patrickbryant1/Umol.

Funder

European Commission

Deutsche Forschungsgemeinschaft

Einstein Stiftung Berlin

Publisher

Springer Science and Business Media LLC

Reference40 articles.

1. Li, Y. Y. & Jones, S. J. M. Drug repositioning for personalized medicine. Genome Med 4, 1–14 (2012).

2. Corso, G., Stärk, H., Jing, B., Barzilay, R. & Jaakkola, T. DiffDock: diffusion steps, twists, and turns for molecular docking. Available: http://arxiv.org/abs/2210.01776 (2022).

3. Masha, K., Noh, J. J. & Dror, R. O. How accurately can one predict drug binding modes using AlphaFold models? Elife 12, RP89386 (2023).

4. Lu, W. et al. TANKBind: Trigonometry-aware neural networks for drug-protein binding structure prediction. Preprint at bioRxiv. p. 2022.06.06.495043. https://doi.org/10.1101/2022.06.06.495043 (2022).

5. Stärk, H., Ganea, O.-E., Pattanaik, L., Barzilay, R. & Jaakkola T. EquiBind: Geometric deep learning for drug binding structure prediction. Available: http://arxiv.org/abs/2202.05146 (2022).

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3