Mole-BERT: Rethinking Pre-training Graph Neural Networks for Molecules

Author:

Xia Jun1ORCID,Zhao Chengshuai2,Hu Bozhen3,Gao Zhangyang3,Tan Cheng3,Liu Yue3,Li Siyuan3,Li Stan Z.1

Affiliation:

1. Westlake University

2. University of California, Irvine

3. Westlake Univerity

Abstract

Recent years have witnessed the prosperity of pre-training graph neural networks (GNNs) for molecules. Typically, atom types as node attributes are randomly masked and GNNs are then trained to predict masked types as in AttrMask \citep{hu2020strategies}, following the Masked Language Modeling (MLM) task of BERT~\citep{devlin2019bert}. However, unlike MLM where the vocabulary is large, the AttrMask pre-training does not learn informative molecular representations due to small and unbalanced atom `vocabulary'. To amend this problem, we propose a variant of VQ-VAE~\citep{van2017neural} as a context-aware tokenizer to encode atom attributes into chemically meaningful discrete codes. This can enlarge the atom vocabulary size and mitigate the quantitative divergence between dominant (e.g., carbons) and rare atoms (e.g., phosphorus). With the enlarged atom `vocabulary', we propose a novel node-level pre-training task, dubbed Masked Atoms Modeling (MAM), to mask some discrete codes randomly and then pre-train GNNs to predict them. MAM also mitigates another issue of AttrMask, namely the negative transfer. It can be easily combined with various pre-training tasks to improve their performance. Furthermore, we propose triplet masked contrastive learning (TMCL) for graph-level pre-training to model the heterogeneous semantic similarity between molecules for effective molecule retrieval. MAM and TMCL constitute a novel pre-training framework, Mole-BERT, which can match or outperform state-of-the-art methods in a fully data-driven manner. We release the code at \textcolor{magenta}{\url{https://github.com/junxia97/Mole-BERT}}.

Publisher

American Chemical Society (ACS)

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3