Attribute-guided prototype network for few-shot molecular property prediction

Author:

Hou Linlin12,Xiang Hongxin12,Zeng Xiangxiang1,Cao Dongsheng3,Zeng Li2,Song Bosheng1

Affiliation:

1. College of Computer Science and Electronic Engineering, Hunan University , Changsha, Hunan 410082 , China

2. Department of AIDD, Shanghai Yuyao Biotechnology Co., Ltd. , Shanghai 201109 , China

3. Xiangya School of Pharmaceutical Sciences, Central South University , Changsha, Hunan 410083 , China

Abstract

Abstract The molecular property prediction (MPP) plays a crucial role in the drug discovery process, providing valuable insights for molecule evaluation and screening. Although deep learning has achieved numerous advances in this area, its success often depends on the availability of substantial labeled data. The few-shot MPP is a more challenging scenario, which aims to identify unseen property with only few available molecules. In this paper, we propose an attribute-guided prototype network (APN) to address the challenge. APN first introduces an molecular attribute extractor, which can not only extract three different types of fingerprint attributes (single fingerprint attributes, dual fingerprint attributes, triplet fingerprint attributes) by considering seven circular-based, five path-based, and two substructure-based fingerprints, but also automatically extract deep attributes from self-supervised learning methods. Furthermore, APN designs the Attribute-Guided Dual-channel Attention module to learn the relationship between the molecular graphs and attributes and refine the local and global representation of the molecules. Compared with existing works, APN leverages high-level human-defined attributes and helps the model to explicitly generalize knowledge in molecular graphs. Experiments on benchmark datasets show that APN can achieve state-of-the-art performance in most cases and demonstrate that the attributes are effective for improving few-shot MPP performance. In addition, the strong generalization ability of APN is verified by conducting experiments on data from different domains.

Funder

National Natural Science Foundation of China

Hunan Provincial Natural Science Foundation of China

Science and Technology Innovation Program of Hunan Province

Postgraduate Scientific Research Innovation Project of Hunan Province

Publisher

Oxford University Press (OUP)

Reference74 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3