Affiliation:
1. Yonsei University
2. University of Cambridge
3. Imperial College London
Abstract
Supercapacitors offer superior energy storage capabilities than traditional capacitors, making them useful for applications such as electric vehicles and rapid large-scale energy storage. The energy storage performance of these devices relies on electrical double-layer capacitance and/or pseudo-capacitance from rapid reversible redox reactions. Metal-organic frameworks (MOFs) have recently emerged as a new class of electrode materials with promising supercapacitor performances and capacitances that exceed those of traditional materials. However, our comparison of the supercapacitor performance of a porous carbon and a state-of-the-art MOF highlights a number of challenges for MOF supercapacitors, including low potential windows, limited cycle lifetimes, and poor rate performances. We propose that the well-defined and tuneable chemical structures of MOFs present a number of avenues for improving supercapacitor performance. We also discuss recent experimental and theoretical work on charging mechanisms in MOF-based supercapacitors, and find a need for more studies that elucidate the charge storage and degradation mechanisms. Ultimately, a deeper understanding will lead to design principles for realising improved supercapacitor energy storage devices.
Funder
UK Research and Innovation
Publisher
American Chemical Society (ACS)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献