Mn Cluster-Embedded N/F Co-Doped Carbon toward Mild Aqueous Supercapacitors

Author:

Zheng Chen1,Han Xu2,Sun Fangfang1,Zhang Yue1,Huang Zihang1,Ma Tianyi3

Affiliation:

1. Institute of Clean Energy Chemistry, Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials of Liaoning Province, College of Chemistry, Liaoning University, Shenyang 110036, China

2. Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China

3. School of Science, RMIT University, Melbourne, VIC 3000, Australia

Abstract

Aqueous supercapacitors have occupied a significant position among various types of stationary energy storage equipment, while their widespread application is hindered by the relatively low energy density. Herein, N/F co-doped carbon materials activated by manganese clusters (NCM) are constructed by the straightforward experimental routine. Benefiting from the elevated conductivity structure at the microscopic level, the optimized NCM-0.5 electrodes exhibited a remarkable specific capacitance of 653 F g−1 at 0.4 A g−1 and exceptional cycling stability (97.39% capacity retention even after 40,000 cycles at the scanning rate of 100 mV s−1) in a neutral 5 M LiCl electrolyte. Moreover, we assembled an asymmetric device pairing with a VOx anode (NCM-0.5//VOx), which delivered a durable life span of 95% capacity retention over 30,000 cycles and an impressive energy density of 77.9 Wh kg−1. This study provides inspiration for transition metal element doping engineering in high-energy storage equipment.

Funder

National Natural Science Foundation of China

Key Project of Scientific Research of the Education Department of Liaoning Province

Natural Science Foundation of Liaoning Province

Shenyang Science and Technology Project

Key Research Project of the Department of Education of Liaoning Province

Australian Research Council

Discovery Project

Linkage Project

Industrial Transformation Training Centre

Australian Government

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3