Anisotropic parameters and P‐wave velocity for orthorhombic media

Author:

Tsvankin Ilya1

Affiliation:

1. Center for Wave Phenomena, Dept. of Geophysics, Colorado School of Mines, Golden, Colorado 80401-1887.

Abstract

Although orthorhombic (or orthotropic) symmetry is believed to be common for fractured reservoirs, the difficulties in dealing with nine independent elastic constants have precluded this model from being used in seismology. A notation introduced in this work is designed to help make seismic inversion and processing for orthorhombic media more practical by simplifying the description of a wide range of seismic signatures. Taking advantage of the fact that the Christoffel equation has the same form in the symmetry planes of orthorhombic and transversely isotropic (TI) media, we can replace the stiffness coefficients by two vertical (P and S) velocities and seven dimensionless parameters that represent an extension of Thomsen's anisotropy coefficients to orthorhombic models. By design, this notation provides a uniform description of anisotropic media with both orthorhombic and TI symmetry. The dimensionless anisotropic parameters introduced here preserve all attractive features of Thomsen notation in treating wave propagation and performing 2-D processing in the symmetry planes of orthorhombic media. The new notation has proved useful in describing seismic signatures outside the symmetry planes as well, especially for P‐waves. Linearization of P‐wave phase velocity in the anisotropic coefficients leads to a concise weak‐anisotropy approximation that provides good accuracy even for models with pronounced polar and azimuthal velocity variations. This approximation can be used efficiently to build analytic solutions for various seismic signatures. One of the most important advantages of the new notation is the reduction in the number of parameters responsible for P‐wave velocities and traveltimes. All kinematic signatures of P‐waves in orthorhombic media depend on just the vertical velocity [Formula: see text] and five anisotropic parameters, with [Formula: see text] serving as a scaling coefficient in homogeneous media. This conclusion, which holds even for orthorhombic models with strong velocity anisotropy, provides an analytic basis for application of P‐wave traveltime inversion and data processing algorithms in orthorhombic media.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3