Innovative use of rate-transient analysis methods to obtain hydraulic-fracture properties for low-permeability reservoirs exhibiting multiphase flow

Author:

Clarkson C. R.1,Qanbari F.1,Williams-Kovacs J. D.2

Affiliation:

1. University of Calgary.

2. TAQA North Ltd.; University of Calgary.

Abstract

Multifractured horizontal wells, while enabling commercial production from unconventional gas and light-oil reservoirs, are challenging to analyze quantitatively to obtain reservoir and hydraulic-fracture properties. Production rates and flowing pressures gathered immediately after hydraulic-fracture stimulation (flowback) and over a longer time period (on-line production) can be interpreted for hydraulic-fracture properties such as fracture surface area or half-length and fracture conductivity, but dynamic fracture properties and multiphase flow during both stages of production can complicate the analysis. Recent studies have suggested that flowback data can provide early insight into these fracture properties if high-resolution fluid rates/pressures are gathered, but the physics of the process are complex, and analytic methods for interpretation are at an early stage of development. Analytic methods for longer-term production data analysis, although better established, are still limited primarily to single-phase flow and simple fracture and reservoir behavior. Rate-transient methods can be applied to both flowback and long-term production data to quantify hydraulic-fracture properties and changes in effective hydraulic-fracture length during production. For the flowback period, simplified analytic methods have been developed for before-breakthrough production of hydraulic-fracturing fluids and after-breakthrough production of hydraulic-fracture and reservoir fluids. These methods are still under development, and early applications can be illustrated. For long-term production analysis, classic rate-transient analysis techniques, such as the square-root-of-time plot, have been modified to account for multiphase flow and stress-sensitive permeability exhibited by low-permeability gas condensate and black-oil reservoirs producing below saturation pressure. A field example consisting of a multifractured horizontal well completed in a tight-oil reservoir isused to to compare hydraulic-fracture properties derived from flowback and long-term production data. Although flowback analysis yields hydraulic-fracture half-lengths consistent with hydraulic-fracture modeling results, long-term production analysis yields much smaller fracture half-lengths, possibly because of breakthrough of gas once bubble-point pressure is reached. Additional mechanisms for effective producing fracture half-length reduction can be proposed. Another important observation is that estimation of fracture properties from long-term production analysis of a reservoir producing below saturation pressure can be in significant error if the estimates are derived from techniques assuming single-phase flow. Corrections to the analytic methods for multiphase flow yield fracture half-lengths consistent with those obtained from history matching using rigorous numerical simulation. In a preliminary analysis, the techniques under development are intended to aid hydraulic-fracture evaluation and design in tight reservoirs that exhibit complex flow characteristics. Furthermore, implications of the findings will be important to assist in designing well operations to maximize well performance.

Publisher

Society of Exploration Geophysicists

Subject

Geology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3