Investigation of injection-induced seismicity using a coupled fluid flow and rate/state friction model

Author:

McClure Mark W.1,Horne Roland N.1

Affiliation:

1. Stanford University, Stanford Geothermal Program Department of Energy Resources Engineering, Stanford, California, USA., .

Abstract

We describe a numerical investigation of seismicity induced by injection into a single isolated fracture. Injection into a single isolated fracture is a simple analog for shear stimulation in enhanced geothermal systems (EGS) during which water is injected into fractured, low permeability rock, triggering slip on preexisting large scale fracture zones. A model was developed and used that couples (1) fluid flow, (2) rate and state friction, and (3) mechanical stress interaction between fracture elements. Based on the results of this model, we propose a mechanism to describe the process by which the stimulated region grows during shear stimulation, which we refer to as the sequential stimulation (SS) mechanism. If the SS mechanism is realistic, it would undermine assumptions that are made for the estimation of the minimum principal stress and unstimulated hydraulic diffusivity. We investigated the effect of injection pressure on induced seismicity. For injection at constant pressure, there was not a significant dependence of maximum event magnitude on injection pressure, but there were more relatively large events for higher injection pressure. Decreasing injection pressure over time significantly reduced the maximum event magnitude. Significant seismicity occurred after shut-in, which was consistent with observations from EGS stimulations. Production of fluid from the well immediately after injection inhibited shut-in seismic events. The results of the model in this study were found to be broadly consistent with results from prior work using a simpler treatment of friction that we refer to as static/dynamic. We investigated the effect of shear-induced pore volume dilation and the rate and state characteristic length scale, [Formula: see text]. Shear-induced pore dilation resulted in a larger number of lower magnitude events. A larger value of [Formula: see text] caused slip to occur aseismically.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Reference68 articles.

1. Asanuma, H., H. Nozaki, T. Uhara, H. Niitsuma, R. Baria and D. Wyborn, 2006, Spatial and temporal distribution of larger seismic events at European and Australian HDR sites: Proceedings, 31st Workshop on Geothermal Reservoir Engineering, Stanford University, http://www.geothermal-energy.org/pdf/IGAstandard/SGW/2006/asanuma.pdf? accessed 7 May 2011.

2. A numerical model for fluid injection induced seismicity at Soultz-sous-Forêts

Cited by 166 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3