Forecasting fluid-injection induced seismicity to choose the best injection strategy for safety and efficiency

Author:

Boyet Auregan12ORCID,Vilarrasa Víctor1,Rutqvist Jonny3,De Simone Silvia4

Affiliation:

1. Global Change Research Group (GCRG), IMEDEA, CSIC-UIB , Esporles, Spain

2. Associated Unit: Hydrogeology Group (UPC-CSIC) , Barcelona, Spain

3. Lawrence Berkeley National Laboratory , Berkeley, CA, USA

4. Institute of Environmental Assessment and Water Research, Spanish National Research Council (IDAEA-CSIC) , Barcelona, Spain

Abstract

Induced seismicity poses a challenge to the development of Enhanced Geothermal Systems (EGS). Improving monitoring and forecasting techniques is essential to mitigate induced seismicity and thereby fostering a positive perception of EGS projects among local authorities and population. Induced seismicity is the result of complex and coupled thermo-hydro-mechanical-chemical mechanisms. Injection flux and pressure are crucial controlling parameters for both hydraulic stimulation and circulation protocols. We develop a methodology combining a hydro-mechanical model with a seismicity rate model to estimate the magnitude and frequency of mainshocks and aftershocks induced by fluid injection. We apply the methodology to the case of the Basel EGS (2006, Switzerland) to compare the effects of progressive, cyclic and constant injections on the mechanical response of discrete faults. Results from the coupled hydro-mechanical models show that the pore pressure diffusion and consequent enhancement of fault permeability are limited to the vicinity of the injection well during cyclic injection. Additionally, constant injection induces seismicity from the start of the injection but enhances the permeability of most of the faults within a shorter duration, inducing less post-injection seismicity. The methodology can be adapted to any numerical model and allows new projects to be developed by anticipating the safest injection protocol. This article is part of the theme issue ‘Induced seismicity in coupled subsurface systems’.

Funder

US department of Energy

Spanish Ministry of Science and Innovation through the ‘Ramón y Cajal’ fellowship

Spanish ‎Ministry of Science and Innovation

Horizon 2020 Framework Programme

Maria de Maeztu Excellence Unit

Publisher

The Royal Society

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Induced seismicity in coupled subsurface systems;Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences;2024-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3