A tensor higher-order singular value decomposition for prestack seismic data noise reduction and interpolation

Author:

Kreimer Nadia1,Sacchi Mauricio D.1

Affiliation:

1. University of Alberta, Department of Physics, Edmonton, Alberta, Canada,.

Abstract

A patch of prestack data depends on four spatial dimensions ([Formula: see text], [Formula: see text] midpoints and [Formula: see text], [Formula: see text] offsets) and frequency. The spatial data at one temporal frequency can be represented by a fourth-order tensor. In ideal conditions of high signal-to-noise ratio and complete sampling, one can assume that the seismic data can be approximated via a low-rank fourth-order tensor. Missing samples were recovered by reinserting data obtained by approximating the original noisy and incomplete data volume with new observations obtained via the rank-reduction process. The higher-order singular value decompostion was used to reduce the rank of the prestack seismic tensor. Synthetic data demonstrated the ability of the proposed seismic data completion algorithm to reconstruct events with curvature. The synthetic example allowed to quantify the quality of the reconstruction for different levels of noise and survey sparsity. We also provided a real data example from the Western Canadian sedimentary basin.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Reference54 articles.

1. Unsupervised Multiway Data Analysis: A Literature Survey

2. Bader, B. W., and T. G. Kolda, 2010, MATLAB Tensor Toolbox Version 2.4: http://csmr.ca.sandia.gov/ tgkolda/TensorToolbox/.

3. The Higher-Order Singular Value Decomposition: Theory and an Application [Lecture Notes

Cited by 173 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. RDA-Net: A multi-cascade network for DAS background noise attenuation;Geoenergy Science and Engineering;2024-11

2. Using multi-way correspondence analysis to examine the Nobel Prize data in STEM related disciplines;Communications in Statistics: Case Studies, Data Analysis and Applications;2024-09-13

3. Low-Rank Approximation Reconstruction of Five-Dimensional Seismic Data;Surveys in Geophysics;2024-07-27

4. Reconstruction and denoising of high-dimensional seismic data via Frobenius-nuclear mixed norm constraints;Journal of Geophysics and Engineering;2024-07-10

5. Iterative algorithm using decoupling method for third-order tensor deblurring;Annals of the University of Craiova Mathematics and Computer Science Series;2024-06-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3