Reconstruction and denoising of high-dimensional seismic data via Frobenius-nuclear mixed norm constraints

Author:

Luo Fei1ORCID,Yan Lanlan1,Cai Jiexiong1,Guo Kai1

Affiliation:

1. SINOPEC Geophysical Research Institute Co., Ltd. , Nanjing 211103 , China

Abstract

Abstract The seismic data acquisition design with ‘two-wide and one-high’ geometry effectively improves the imaging quality of seismic records. However, when data are acquired in the field, complex near surface conditions and environmental factors can introduce a variety of noises and gaps in seismic data, impacting the accuracy of seismic imaging. Currently, the method of low-rank matrix/tensor completion is commonly employed for data reconstruction after normal moveout (NMO). In a complex subsurface medium, common midpoint data processed with NMO may not satisfy the linear or quasi-linear assumptions within local data windows. Therefore, this paper exploits the inherent low-rank structure of high-dimensional data to propose a high-dimensional tensor completion method under the Frobenius-nuclear mixed norm constraint (FN-TC). This method unfolds the 4D data tensor into the frequency-space domain along its modes (m, n) and subsequently imposes a non-convex Frobenius-nuclear mixed norm constraint on the unfolded approximate matrices. This approach closely approximates the rank function of the factor matrices, thereby enhancing the accuracy of data modeling. Theoretical and practical studies demonstrate that the novel FN-TC approach can effectively reconstruct high-dimensional seismic data and suppress noise, thereby providing data support for subsequent high-precision seismic imaging.

Funder

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3