Stochastic inversion of facies from seismic data based on sequential simulations and probability perturbation method

Author:

Grana Dario1,Mukerji Tapan2,Dvorkin Jack1,Mavko Gary1

Affiliation:

1. Stanford University, Department of Geophysics, Stanford, California, USA..

2. Stanford University, Department of Energy Resources Engineering, Stanford, California, USA..

Abstract

We presented a new methodology for seismic reservoir characterization that combined advanced geostatistical methods with traditional geophysical models to provide fine-scale reservoir models of facies and reservoir properties, such as porosity and net-to-gross. The methodology we proposed was a stochastic inversion where we simultaneously obtained earth models of facies, rock properties, and elastic attributes. It is based on an iterative process where we generated a set of models of reservoir properties by using sequential simulations, calculated the corresponding elastic attributes through rock-physics relations, computed synthetic seismograms and, finally, compared these synthetic results with the real seismic amplitudes. The optimization is a stochastic technique, the probability perturbation method, that perturbs the probability distribution of the initial realization and allows obtaining a facies model consistent with all available data through a relatively small number of iterations. The probability perturbation approach uses the Tau model probabillistic method, which provides an analytical representation to combine single probabilistic information into a joint conditional probability. The advantages of probability perturbation method are that it transforms a 3D multiparameter optimization problem into a set of 1D optimization problems and it allowed us to include several probabilistic information through the Tau model. The method was tested on a synthetic case where we generated a set of pseudologs and the corresponding synthetic seismograms. We then applied the method to a real well profile, and finally extended it to a 2D seismic section. The application to the real reservoir study included data from three wells and partially stacked near and far seismic sections, and provided as a main result the set of optimized models of facies, and of the relevant petrophysical properties, to be the initial static reservoir models for fluid flow reservoir simulations.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3