Seismic velocity and attenuation structures of the Queen Charlotte Basin from full-waveform tomography of seismic reflection data

Author:

Takam Takougang E. M.1,Calvert A. J.2

Affiliation:

1. Formerly Simon Fraser University, Department of Earth Sciences, Burnaby, British Columbia, Canada; presently Curtin University of Technology, Department of Exploration Geophysics, Perth, WA, Australia..

2. Simon Fraser University, Department of Earth Sciences, Burnaby, British Columbia, Canada..

Abstract

We applied viscoacoustic waveform tomography to four seismic reflection lines from the central and northern part of the Queen Charlotte sedimentary basin and, using frequencies of 7–12 Hz, we estimated the compressional velocity and attenuation above a depth of approximately 1.2 km. We refined our previously published inversion strategy by alternating between phase-only and amplitude-plus-phase velocity inversion for the first two pairs of frequencies used, and added a second step, in which we inverted for attenuation from the lowest frequency using the final recovered velocity model and an initial homogeneous [Formula: see text]-model. Our recovered velocity and attenuation models demonstrated an overall good correlation with the available sonic and gamma-ray logs. Modeled seismic data matches the field data well and 1D velocity and attenuation profiles extracted at line intersections show a good correlation, thus demonstrating the robust nature of the results. Recovered velocities aid in interpreting shallow structures not readily identifiable on the conventional migration such as Quaternary strata and Pliocene faulting. Recovered attenuation values in the sedimentary rocks are generally consistent with saturated sandstones and consistent with the geology interpreted from well logs. Localized regions of elevated attenuation and associated low velocities correlate with siltstones and shales, the presence of hydrocarbons, or inferred increases in porosity due to fracturing. Seafloor pockmarks, where venting of gas occurs, are underlain by low velocities and an anomalous attenuation variation, and pipe-like gas chimneys are interpreted in two other areas of Hecate Strait. Igneous basement is associated with high velocity and high attenuation in its uppermost part, suggesting the presence of volcanic rocks, but the elevated attenuation may also be due to scattering and elastic mode conversions not included in the viscoacoustic inversion.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3