Seismic Velocity Structure Beneath the Tofino Forearc Basin Using Full Waveform Inversion

Author:

Yelisetti SubbaraoORCID,Spence George D.

Abstract

Given the effects of steep dips and large lateral variations in seismic velocity beneath the Vancouver Island continental shelf, seismic processing and travel time inversion are inadequate to obtain a detailed velocity model of the subsurface. Therefore, seismic full waveform inversion is applied to multichannel seismic reflection data to obtain a high-resolution velocity model beneath the Tofino fore-arc basin under the continental shelf off Vancouver Island margin. Seismic velocities obtained in this study help in understanding the shallow shelf sediment structures, as well as the deeper structures associated with accreted terranes, such as Pacific Rim and Crescent terranes. Shallow high velocities, as large as ∼5 km/s, were modeled in the mid-shelf region at ∼1.5–2.0 km depth. These coincide with an anticlinal structure in the seismic data, and possibly indicate the shallowest occurrence of the volcanic Crescent terrane. In general, seismic velocities increase landward, indicating sediment over-consolidation related to the compressional regime associated with the ongoing subduction of the Juan de Fuca plate and the emplacement of Pacific Rim and Crescent accreted terranes. Seismic velocities show a sharp increase about 10 km west of Vancouver Island, possibly indicating an underlying transition to the Pacific Rim terrane. A prominent low velocity zone extending over 10 km is observed in the velocity model at 800–900 m below the seafloor. This possibly indicates the presence of a high porosity layer associated with lithology changes. Alternatively, this may indicate fluid over-pressure or over-pressured gas in this potential hydrocarbon environment.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3