Approximation of pure acoustic seismic wave propagation in TTI media

Author:

Chu Chunlei1,Macy Brian K.1,Anno Phil D.1

Affiliation:

1. ConocoPhillips, Houston, Texas, USA..

Abstract

Pseudoacoustic anisotropic wave equations are simplified elastic wave equations obtained by setting the S-wave velocity to zero along the anisotropy axis of symmetry. These pseudoacoustic wave equations greatly reduce the computational cost of modeling and imaging compared to the full elastic wave equation while preserving P-wave kinematics very well. For this reason, they are widely used in reverse time migration (RTM) to account for anisotropic effects. One fundamental shortcoming of this pseudoacoustic approximation is that it only prevents S-wave propagation along the symmetry axis and not in other directions. This problem leads to the presence of unwanted S-waves in P-wave simulation results and brings artifacts into P-wave RTM images. More significantly, the pseudoacoustic wave equations become unstable for anisotropy parameters [Formula: see text] and for heterogeneous models with highly varying dip and azimuth angles in tilted transversely isotropic (TTI) media. Pure acoustic anisotropic wave equations completely decouple the P-wave response from the elastic wavefield and naturally solve all the above-mentioned problems of the pseudoacoustic wave equations without significantly increasing the computational cost. In this work, we propose new pure acoustic TTI wave equations and compare them with the conventional coupled pseudoacoustic wave equations. Our equations can be directly solved using either the finite-difference method or the pseudospectral method. We give two approaches to derive these equations. One employs Taylor series expansion to approximate the pseudodifferential operator in the decoupled P-wave equation, and the other uses isotropic and elliptically anisotropic dispersion relations to reduce the temporal frequency order of the P-SV dispersion equation. We use several numerical examples to demonstrate that the newly derived pure acoustic wave equations produce highly accurate P-wave results, very close to results produced by coupled pseudoacoustic wave equations, but completely free from S-wave artifacts and instabilities.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3