A new highly accurate and efficient pure visco‐acoustic wave equation for tilted transversely isotropic attenuating media

Author:

Xiang Lei12,Huang Jianping12,Mao Qiang12ORCID,Mu Xinru12

Affiliation:

1. Geosciences Department China University of Petroleum (East China) Qingdao Shandong China

2. Pilot National Laboratory for Marine Science and Technology (Qingdao) Qingdao Shandong China

Abstract

AbstractThe propagation of seismic waves in attenuating anisotropic media exhibits amplitude dissipation and phase dispersion. To describe its effects, the fractional Laplacian pure visco‐acoustic wave equations capable of producing stable and noise‐free wavefields have been derived. However, except for acoustic approximation, previous wave equations utilize the approximations with lower accuracy in simplifying the denominator of the approximate complex‐valued dispersion relation, resulting in reduced accuracy. To address this concern, we use a combination of complex stiffness coefficients to replace the denominator term of the approximate complex‐valued dispersion relation. This approximation effectively reduces the loss of accuracy caused by ignoring the influence of the velocity anisotropy parameter ε and the attenuation anisotropy parameter εQ in the denominator term, leading to a wave equation with high accuracy in media with large anisotropic parameters ε and δ. In addition, the new wave equation only contains two high‐order spatial partial derivatives and has high computational efficiency. Theoretical analysis and numerical examples demonstrate that the proposed pure visco‐acoustic tilted transversely isotropic wave equation outperforms the previous pure visco‐acoustic wave equation in terms of simulation accuracy. The newly developed wave equation is well suited for the application of Q‐compensated reverse time migration and full waveform inversion in attenuating anisotropic media.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3