Single-station SVD-based polarization filtering of ground roll: Perfection and investigation of limitations and pitfalls

Author:

Tiapkina Olena123,Landrø Martin123,Tyapkin Yuriy123,Link Brian123

Affiliation:

1. Norwegian University of Science and Technology (NTNU), Department of Petroleum Engineering and Applied Geophysics, Trondheim, Norway..

2. Formerly Ukrainian State Geological Prospecting Institute, Seismic Department, Kiev, Ukraine; presently SE Naukanaftogaz, Kiev, Ukraine..

3. Tetrale Technologies, Calgary, Alberta, Canada..

Abstract

The advent of single receiver point, multi-component geophones has necessitated that ground roll be removed in the processing flow rather than through acquisition design. A wide class of processing methods for ground-roll elimination is polarization filtering. A number of these methods use singular value decomposition (SVD) or some related transformations. We focus on a single-station SVD-based polarization filter that we consider to be one of the best in the industry. The method is comprised of two stages: (1) ground-roll detection and (2) ground-roll estimation and filtering. To detect the ground roll, a special attribute dependent on the singular values of a three-column matrix formed by a sliding time window is used. The ground roll is approximated and subtracted using the first two eigenimages of this matrix. To limit the possible damage to the signal, the filter operates within the record intervals where the ground roll is detected and within the ground-roll frequency bandwidth only. We improve the ground-roll detector to make it theoretically insensitive to ambient noise and more sensitive to the presence of ground roll. The advantage of the new detector is demonstrated on synthetic and field data sets. We estimate theoretically and with synthetic data the attenuation of the underlying reflections that can be caused by the polarization filter. We show that the underlying signal always loses almost all the energy on the vertical component and on the horizontal component in the ground-roll propagation plane and within the ground-roll frequency bandwidth. The only signal component, if it exists, that can retain a significant part of its energy is the horizontal component orthogonal to the above plane. When 2D 3C field operations are conducted, the signal particle motion can deviate from the ground-roll propagation plane and can therefore retain some of its energy due to a set of offline reflections. In the case of 3D 3C seismic surveys, the reflected signal always deviates from the ground-roll propagation plane on the receiver lines that do not contain the source. This is confirmed with a 2.5D 3C synthetic data set. We discuss when the ability of the filter to effectively subtract the ground roll may, or may not, allow us to ignore the inevitable harm that is done to the underlying reflected waves.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3