Affiliation:
1. Geotechnical and Structural Engineering Research Center, Shandong University, Jinan 250061, China
2. School of Qilu Transportation, Shandong University, Jinan 250061, China
Abstract
The seismic method is one of the main geophysical methods that are widely used to image the geology ahead of tunnels during tunnel construction. However, owing to the complex environment and limited observation aperture in a tunnel, symmetric false results (that appear in imaging results but not in the actual environment) frequently occur in imaging results. In a symmetric false reflection, false and true reflection points are axisymmetric around the tunnel axis. Such false results frequently cause errors in the interpretation of the geological conditions ahead of a tunnel face. To overcome this problem, a seismic method that uses adaptive polarization analysis was adopted to better image geological conditions. Based on an adaptive time window, the polarization characteristics of seismic signals were analyzed to calculate the main polarization direction. The symmetric false results in imaging results were suppressed by adopting a weighting coefficient based on the angle between the main polarization direction and ray direction. Numerical simulations revealed the superiority of the method when applied to synthetic data processing. Moreover, the method was applied to a diversion tunnel. The method successfully identified the fracture zones ahead of the tunnel face, thus significantly enhancing the safety of tunnel construction.
Publisher
Environmental and Engineering Geophysical Society
Subject
Geophysics,Geotechnical Engineering and Engineering Geology,Environmental Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献