Prior information, sampling distributions, and the curse of dimensionality

Author:

Curtis Andrew1,Lomax Anthony2

Affiliation:

1. Schlumberger Cambridge Research Ltd., High Cross, Madingley Road, Cambridge, CB3 0EL, United Kingdom.

2. UMR Geosciences Azur, 250 Rue Albert Einstein (bat 4), 06560 Valbonne, France.

Abstract

This tutorial addresses geometrical issues that concern the specification of high‐dimensional sampling distributions in Bayesian inversion. We illustrate that simple, low‐dimensional geometrical concepts that are sometimes used to construct such distributions may become completely distorted (and even untrue) in higher dimensional problems. This has important implications for Bayesian inversion: if a convenient sampling distribution is constructed using low dimensional geometrical concepts which cause it to differ from the distribution representing our prior information, these differences can become extremely expensive to correct in higher dimensions. Indeed, they may make a nonlinear inversion computationally intractable when this need not be the case. A crucial factor in Bayesian inversion is, therefore, whether one firmly believes in a particular prior distribution. If so, this distribution may constitute the most efficient sampling distribution, even in cases where it is not straight‐forward to draw samples from that prior distribution. The sampling artifacts described above then become irrelevant since they represent true prior beliefs.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3