A laboratory study to determine the effect of iron oxides on proton NMR measurements

Author:

Keating Kristina1,Knight Rosemary1

Affiliation:

1. Stanford University, Department of Geophysics, Mitchell Building, Stanford, California 94304. .

Abstract

Using laboratory methods, we investigate the effect of the presence and mineralogic form of iron on measured proton nuclear magnetic resonance (NMR) relaxation rates. Five samples of quartz sand were coated with ferrihydrite, goethite, hematite, lepidocrocite, and magnetite. The relaxation rates for these iron-oxide-coated sands saturated with water were measured and compared to the relaxation rate of quartz sand saturated with water. We found that the presence of the iron oxides led to increases in the relaxation rates by increasing the surface relaxation rate. The magnitude of the surface relaxation rate was different for the various iron-oxide minerals because of changes in both the surface-area-to-volume ratio of the pore space, and the surface relaxivity. The relaxation rate of the magnetite-coated sand was further increased because of internal magnetic field gradients caused by the presence of magnetite. We conclude that both the concentration and mineralogical form of iron can have a significant impact on NMR relaxation behavior.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3