Ni2+ removal by ion exchange resins and activated carbon: a benchtop NMR study

Author:

Bernardi M.ORCID,Hantson A.-L.,Caulier G.,Eyley S.,Thielemans W.,De Weireld G.,Gossuin Y.

Abstract

AbstractHeavy metal pollution in water is a critical environmental concern, demanding effective remediation techniques. Traditional methods, including ion exchange and adsorption, often rely on inductively coupled plasma (ICP) atomic emission spectroscopy/mass spectrometry (AES/MS) for the indirect and time-consuming measurement of residual metal concentrations. In contrast, this study employs innovative direct monitoring of nickel removal by benchtop NMR relaxometry using the paramagnetic properties of Ni2+. To prove the feasibility of the NMR follow-up of Ni2+ uptake, batch experiments were performed with Amberlite IR120, Amberlite IRC748, Dowex Marathon MSC, and activated carbon (AC), which were previously characterized by various techniques. The effect of contact time, pH, and Ni2+ concentration on removal efficiency were studied. Pseudo-first and pseudo-second order kinetic models were used. The Langmuir model effectively described the equilibrium isotherms. The longitudinal and transverse relaxation curves of the loaded resins were biexponential. For sulfonic resins, a strong correlation was observed between the relaxation rates of the fast-relaxing fraction and the Ni2+ content determined by ICP-AES/MS. For IRC748, the effect of Ni2+ loading on the relaxation rates was weaker because of Ni2+ complexation. The relaxation curves of loaded AC revealed multiple fractions. Centrifugation was employed to eliminate the contribution of intergranular water. The remaining intragranular water contribution was biexponential. For high Ni2+ loadings, the relaxation rates of the slow relaxing fraction increased with the AC Ni2+ content. These results mark the initial stage in developing a column experiment to monitor, in real-time, adsorbent loading by NMR relaxometry.

Funder

Fonds De La Recherche Scientifique - FNRS

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3