Suprasalt model building using full-waveform inversion

Author:

Tiwari Dhananjay1,Mao Jian1,Sheng James1

Affiliation:

1. TGS, Houston, Texas, USA..

Abstract

The application of full-waveform inversion (FWI) to bring high resolution to the velocity model is becoming a standard approach in the velocity model-building workflow. Diving wave FWI in conjunction with reflection FWI (RFWI) has been widely used in the Gulf of Mexico (GOM) to optimize the suprasalt model. Accuracy of a velocity model from tomography is dependent on residual moveout (RMO) picking accuracy. In a good signal-to-noise ratio area, the confidence of RMO picking is high. But gathers in areas affected by gas exhibit poor event continuity, which makes it difficult to get accurate RMO picks. In such a geologic regime, FWI can improve the velocity model and therefore the final image quality. There are two main components of a velocity model from the GOM area: the first is the sediment, and the second is salt geometry. In the beginning of the model-building cycle, it is most likely that salt geometry is not accurately defined. This inaccuracy leads to a big mismatch between synthetic and observed data for both diving wave FWI and RFWI. One way to handle this situation is to start with the salt model and iteratively adjust the salt interpretation as FWI model building progresses from lower to higher frequencies. Another approach could be eliminating the salt-related energy from the input and then using the sediment-only model for FWI. We are proposing a desalt approach in which we try to eliminate or reduce the salt-related energy from the input data and then use a sediment-only velocity model as a starting model for the entire suprasalt FWI workflow. We will present a case study in which, by adapting the desalt workflow, we could manage to do more FWI iterations by eliminating salt interpretation.

Publisher

Society of Exploration Geophysicists

Subject

Geology,Geophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3