FORMATION VELOCITY AND DENSITY—THE DIAGNOSTIC BASICS FOR STRATIGRAPHIC TRAPS

Author:

Gardner G. H. F.1,Gardner L. W.1,Gregory A. R.1

Affiliation:

1. Gulf Research & Development Co., Pittsburgh, Pennsylvania 15230

Abstract

A multiplicity of factors influence seismic reflection coefficients and the observed gravity of typical sedimentary rocks. Rock velocity and density depend upon the mineral composition and the granular nature of the rock matrix, cementation, porosity, fluid content, and environmental pressure. Depth of burial and geologic age also have an effect. Lithology and porosity can be related empirically to velocity by the time‐average equation. This equation is most reliable when the rock is under substantial pressure, is saturated with brine, and contains well‐cemented grains. For very low porosity rocks under large pressures, the mineral composition can be related to velocity by the theories of Voigt and Reuss. One effect of pressure variation on velocity results from the opening or closing of microcracks. For porous sedimentary rocks, only the difference between overburden and fluid pressure affects the microcrack system. Existing theory does not take into account the effect of microcrack closure on the elastic behavior of rocks under pressure or the chemical interaction between water and clay particles. The theory of Gassmann can be used to calculate the effect of different saturating fluids on the P-wave velocity of porous rocks. The effect may be large enough in shallow, recent sediments to permit gas sands to be distinguished from water sands on seismic records. At depths greater than about 6000 ft, however, the reflection coefficient becomes essentially independent of the nature of the fluid. Data show the systematic relationship between velocity and density in sedimentary rocks. As a result, reflection coefficients can often be estimated satisfactorily from velocity information alone.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3