An efficient 2D inversion scheme for airborne frequency-domain data

Author:

Boesen Tue1ORCID,Auken Esben1ORCID,Christiansen Anders Vest1ORCID,Fiandaca Gianluca1ORCID,Kirkegaard Casper2,Aspmo Pfaffhuber Andreas3ORCID,Vöge Malte3

Affiliation:

1. Aarhus University, Aarhus, Denmark..

2. QIAGEN Aarhus, Aarhus, Denmark..

3. Norwegian Geotechnical Institute, Oslo, Norway..

Abstract

In many cases, inversion in 2D gives a better description of the subsurface compared with 1D inversion, but, computationally, 2D inversion is expensive, and it can be hard to use for large-scale surveys. We have developed an efficient hybrid 2D airborne frequency-domain electromagnetic inversion algorithm. Our hybrid scheme combines 1D and 2D inversions in a three-stage process, in which each step is progressively more accurate and computationally more expensive than the previous one. This results in an approximately [Formula: see text] speedup compared with full 2D inversions, and with only minor changes to the inversion results. Our inversion structure is based on a regular grid, in which each sounding is discretized individually. The 1D modeling code uses layered models with derivatives derived through the finite-difference method, whereas our 2D modeling code uses an adaptive finite-element mesh, and it uses the adjoint-state method to calculate the derivatives. By incorporating the inversion grid structure into the 2D finite-element mesh, interpolation between the different meshes becomes trivial. Large surveys are handled by using local meshing to split large surveys into small sections, which retains the 2D information. The algorithm is heavily optimized and parallelized over the frequencies and sections, with good scalability even on nonuniform memory architecture systems, on which it is generally hard to achieve a satisfactory scaling. The algorithm has been tested successfully with various synthetic studies as well as field examples, of which results from two synthetic studies and a field example are shown.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3