Coupling geomechanical modeling with seismic pressure prediction

Author:

Heidari Mahdi1ORCID,Nikolinakou Maria A.1,Flemings Peter B.2

Affiliation:

1. The University of Texas at Austin, Jackson School of Geosciences, Bureau of Economic Geology, Austin, Texas, USA..

2. The University of Texas at Austin, Jackson School of Geosciences, Department of Geological Sciences and Institute for Geophysics, Austin, Texas, USA..

Abstract

We couple geomechanical modeling with seismic velocity to enhance the prediction of pressure and stresses in complex geologic settings. In these settings, pressure is controlled by mean and shear stresses rather than by only the vertical (overburden) stress. We estimate total mean and shear stresses from a geomechanical model. Effective mean and shear stresses are calculated from velocity using a relationship that we develop between velocity and these stresses. The pressure prediction process is iterated to attain convergence between the predicted pressure field and the one input in the geomechanical model. We also explicitly predict the full stress tensor. We apply our method along with the standard, vertical-effective-stress method to a salt basin beneath the Sigsbee Escarpment in the Mad Dog field, Gulf of Mexico. The methods are constrained to the same pressure data along a calibration well and are then used to predict pressure and stresses across the basin. We find that salt and basin bathymetry substantially perturb the stress field. The pressures predicted by the two methods differ the least at the calibration well and the most in areas where the total mean and shear stresses are the most different from those at the same burial depth at the calibration well. Our method is shown to predict pressures measured along a subsalt well better than the standard, vertical method. We calculate minimum stress and the drilling window along a vertical profile near salt and find that they significantly differ from the ones predicted by the standard, vertical method.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3