Implications of static low-frequency model on seismic geomechanics inversion

Author:

Sharifi Javad1ORCID

Affiliation:

1. Ferdowsi University of Mashhad, Department of Geology, Faculty of Science, Mashhad, Iran. , (corresponding author).

Abstract

I have developed a novel insight into the differences between static and dynamic moduli and their effects on the performance of seismic geomechanics inversion. This achievement is obtained from triaxial deformation tests and ultrasonic measurements on core plugs and reveals that the static Young’s modulus deviates from the dynamic one in porous media, especially in particular ranges of depth and pressure, although conventional regression relationships suggest the opposite, i.e., similar trends for the static and dynamic Young’s moduli. Next, a novel simple approach is formulated to incorporate laboratory information directly into a seismic low-frequency model (LFM) using an artificial neural network to achieve a static low-frequency model (SLFM). Respecting the critical role of the LFM in the reliability of seismic inversion, any modification to the process of building this model can contribute to higher accuracy of the subsequent seismic geomechanics modeling. For this, LFMs are built using static and dynamic data before proceeding to seismic inversion to derive 3D cubes of static Young’s and bulk moduli. The results are successfully validated using data from known wells as well as a blind well. The modeling outcomes demonstrate that the seismic inversion based on the dynamic low-frequency model (DLFM) would return the same results for static and dynamic bulk moduli. In contrast, the results are erroneous for the static Young’s modulus when the conventional DLFM was adopted. Accordingly, the intelligent approach to static low-frequency modeling is found to be a good interpolation technique for estimating geomechanical parameters, as indicated by the good agreement between the static data and the corresponding inversion results at the well locations. My findings place emphasis on the necessity of reconsidering the relationship between the static and dynamic Young’s moduli and highlight the advantage of using an SLFM to increase the accuracy of geomechanical modeling.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3