Fast plane-wave reverse time migration

Author:

Wang Xiongwen1ORCID,Ji Xu2ORCID,Liu Hongwei2ORCID,Luo Yi2

Affiliation:

1. Aramco Asia Beijing Research Center, Beijing 100102, China..

2. EXPEC Advanced Research Center, Saudi Aramco, Dhahran, Saudi Arabia..

Abstract

Plane-wave reverse time migration (RTM) could potentially provide quick subsurface images by migrating fewer plane-wave gathers than shot gathers. However, the time delay between the first and the last excitation sources in the plane-wave source largely increases the computation cost and decreases the practical value of this method. Although the time delay problem is easily overcome by periodical phase shifting in the frequency domain for one-way wave-equation migration, it remains a challenge for time-domain RTM. We have developed a novel method, referred as to fast plane-wave RTM (FP-RTM), to eliminate unnecessary computation burden and significantly reduce the computational cost. In the proposed FP-RTM, we assume that the Green’s function has finite-length support; thus, the plane-wave source function and its responding data can be wrapped periodically in the time domain. The wrapping length is the assumed total duration length of Green’s function. We also determine that only two period plane-wave source and data after the wrapping process are required for generating the outcome with adequate accuracy. Although the computation time for one plane-wave gather is twice as long as a normal shot gather migration, a large amount of computation cost is saved because the total number of plane-wave gathers to be migrated is usually much less than the total number of shot gathers. Our FP-RTM can be used to rapidly generate RTM images and plane-wave domain common-image gathers for velocity model building. The synthetic and field data examples are evaluated to validate the efficiency and accuracy of our method.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3