Periodic plane-wave least-squares reverse time migration for diffractions

Author:

Li Chuang1ORCID,Gao Jinghuai1ORCID,Gao Zhaoqi1ORCID,Wang Rongrong2ORCID,Yang Tao1

Affiliation:

1. Xi’an Jiaotong University, School of Electronics and Information Engineering, Xi’an 710049, China and Xi’an Jiaotong University, National Engineering Laboratory for Offshore Oil Exploration, Xi’an 710049, China.(corresponding author); .

2. Chinese Academy of Sciences, Institute of Electrics, Beijing 100190, China and University of Chinese Academy of Sciences, School of Electronics, Beijing 100190, China..

Abstract

Diffraction imaging is important for high-resolution characterization of small subsurface heterogeneities. However, due to geometry limitations and noise distortion, conventional diffraction imaging methods may produce low-quality images. We have adopted a periodic plane-wave least-squares reverse time migration method for diffractions to improve the image quality of heterogeneities. The method reformulates diffraction imaging as an inverse problem using the Born modeling operator and its adjoint operator derived in the periodic plane-wave domain. The inverse problem is implemented for diffractions separated by a plane-wave destruction filter from the periodic plane-wave sections. Because the plane-wave destruction filter may fail to eliminate hyperbolic reflections and noise, we adopt a hyperbolic misfit function to minimize a weighted residual using an iteratively reweighted least-squares algorithm and thereby reduce residual reflections and noise. Synthetic and field data tests show that the adopted method can significantly improve the image quality of subsalt and deep heterogeneities. Compared with reverse time migration, it produces better images with fewer artifacts, higher resolution, and more balanced amplitude. Therefore, the adopted method can accurately characterize small heterogeneities and provide a reliable input for seismic interpretation in the prediction of hydrocarbon reservoirs.

Funder

Natural Science Foundation of Shaanxi Province

National Key R&D Program of China

China Postdoctoral Science Foundation

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3