Microseismic velocity model inversion and source location: The use of neighborhood algorithm and master station method

Author:

Tan Yuyang1ORCID,He Chuan2,Mao Zhonghua3

Affiliation:

1. University of Science and Technology of China, Laboratory of Seismology and Physics of Earth’s Interior, School of Earth and Space Sciences, Hefei, China..

2. Peking University, Institute of Oil & Gas, School of Earth and Space Sciences, Beijing, China..

3. SINOPEC Geophysical Company, Shengli Branch, Dongying, China..

Abstract

The accuracy of the velocity model strongly affects the accuracy of microseismic source location and hence the reliability of fracture imaging. We have developed a systematic methodology for microseismic velocity model inversion and source location. A new misfit function is used for both problems, which yields more reliable result than the conventional ones. Using the same measure of misfit, the location errors resulting from the use of different misfit functions are eliminated. The neighborhood algorithm and master station method (MSM) are adopted for calculating the velocity model and source location, respectively. The reason for using the neighborhood algorithm is that it has fewer tuning parameters and is easy to be tuned, whereas the advantage of the MSM is that it can automatically remove the mispicks. The performance of the proposed methods is illustrated using the ball-hit events with known locations, and the validity of the inversion results is verified by the relocations of these events. We also used the inverted velocity models to locate the microseismic events detected from the monitoring data. The location result indicates that the fractures have an average half-length of 280 m and height of 55 m and the fracture azimuth is approximately N77°W.

Funder

National Key Research and Development Program of China

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3