Prediction of fracture density using genetic algorithm support vector machine based on acoustic logging data

Author:

Li Tianyang1ORCID,Wang Ruihe1,Wang Zizhen1ORCID,Zhao Mingyuan1,Li Lei2

Affiliation:

1. China University of Petroleum (Huadong), School of Petroleum Engineering, Qingdao, China..

2. Shengli College China University of Petroleum, College of Petroleum Engineering, Dongying, China..

Abstract

Existing methods of well-logging interpretation cannot be applied accurately for the exploration and evaluation of carbonate reservoirs because of the fracture development. Based on the fracture density obtained by core analysis in a carbonate reservoir located in the Ordos Basin, in northwest China, three types of fracture density (low fracture density, medium fracture density, and high fracture density) of the target formation were identified. We investigated the effect of fractures on acoustic logging signals in the time and frequency domains by the Hilbert-Huang transform (HHT) and extracted 11 features in the time domain and nine features in the frequency domain. Then, we reduced the features in the time and frequency domain to three principal components by principal component analysis. Finally, a new prediction model of genetic algorithm-support vector machine method based on HHT of acoustic logging data was reported to predict the fracture density. The results indicate that the fracture density has a greater effect on the attenuation of intrinsic mode function 2 (IMF2) and IMF3 components for three different types of formation by empirical-mode decomposition analysis. The energy of the Stoneley wave and S-wave has higher sensitivity than the P-wave. Compared with the time domain, the distribution in the high-frequency domain has a greater correlation with fracture density by the Hilbert spectrum and marginal spectrum. The correlation coefficients between the fracture density and nine features in the frequency domain ([Formula: see text]) are better than the coefficients with 11 features in the time domain ([Formula: see text]). The core analysis and interpretation of resistivity image logging support the validity and effectiveness of our model. The prediction accuracy using the features in the frequency domain can reach to 82%–90%, which is much higher than using the features in the time domain with accuracy of 52%–59%. The application with more information of original acoustic logging data in our model not only avoid the error in velocity picking but also point the direction for the future prediction.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Qingdao Postdoctoral Applied Research Project

Fundamental Research Funds for the Central Universities

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3