A fast algorithm for regularized focused 3D inversion of gravity data using randomized singular-value decomposition

Author:

Vatankhah Saeed1ORCID,Anne Renaut Rosemary2ORCID,Ardestani Vahid Ebrahimzadeh1

Affiliation:

1. University of Tehran, Institute of Geophysics, Tehran, Iran..

2. Arizona State University, School of Mathematical and Statistical Sciences, Tempe, Arizona, USA..

Abstract

We develop a fast algorithm for solving the under-determined 3D linear gravity inverse problem based on randomized singular-value decomposition (RSVD). The algorithm combines an iteratively reweighted approach for [Formula: see text]-norm regularization with the RSVD methodology in which the large-scale linear system at each iteration is replaced with a much smaller linear system. Although the optimal choice for the low-rank approximation of the system matrix with [Formula: see text] rows is [Formula: see text], acceptable results are achievable with [Formula: see text]. In contrast to the use of the iterative LSQR algorithm for the solution of linear systems at each iteration, the singular values generated using RSVD yield a good approximation of the dominant singular values of the large-scale system matrix. Thus, the regularization parameter found for the small system at each iteration is dependent on the dominant singular values of the large-scale system matrix and appropriately regularizes the dominant singular space of the large-scale problem. The results achieved are comparable with those obtained using the LSQR algorithm for solving each linear system, but they are obtained at a reduced computational cost. The method has been tested on synthetic models along with real gravity data from the Morro do Engenho complex in central Brazil.

Funder

NSF

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3