Adopting normalized full gradient method for regional‐scale gravity modelling: A case study for Northwestern Iran

Author:

Alipour Ako1ORCID,Motaghi Khalil1ORCID,Mousavi Zahra1ORCID,Cheraghi Hamideh2ORCID,Saadat Seyed Abdoreza2

Affiliation:

1. Department of Earth Sciences Institute for Advanced Studies in Basic Sciences (IASBS) Zanjan Iran

2. National Cartographic Center of Iran Tehran Iran

Abstract

AbstractThe normalized full gradient was developed to determine anomalous bodies, such as oil and gas fields or simple geological structures studies. We believe that even in complicated geology, normalized full gradient is practical. We introduce data preprocessing and use step‐by‐step simple‐to‐complicated synthetic tests to develop previous researchers’ ideas for regional‐scale gravity modelling. One of the most important steps of the normalized full gradient is the determination of the N optimum value. We found that prevalent methods such as the standard spectral or maxima method are feasible in simple structures only. So, we have suggested the imaging criteria routine for complicated cases. We trace maximum normalized full gradient responses to detect the normalized full gradient responses at the increasing harmonic numbers as the transition of the extensive part of the anomaly to the sharp part of that. With imaging criteria for the determination of N optimum values, the complicated synthetic test results show the success of the normalized full gradient to understand complicated gravity signals. In the real case, we have studied the Northwestern Iran normalized full gradient model of the Bouguer ground gravity data beneath the seismic profile and prepared a P receiver function depth section to uncover the geometry of the Moho boundary and important interfaces in the crust. We suggest the inferred synthetic model from the Bouguer ground gravity anomaly and P receiver function depth section to normalized full gradient trustworthy test in real cases. According to the synthetic test results, we understand the frame of the normalized full gradient responses in the semi‐real case and truthful responses in the real case. Along with this, we study the second ground gravity profile of Northwestern Iran in a good resolution to uncover the deeper structures. The real case results show the possibility of Moho offset and thinning lithosphere beneath the North Tabriz Fault lithospheric boundary, the possible source of Sahand volcanic centre at the west side of the Moho offset beneath North Tabriz Fault, the deep root of the Sabalan volcanic centre in the lower crust and the lithospheric and asthenospheric wedge with the density contrast beneath Sahand–Sabalan volcanic centres. One of the most important results of our study is the lithosphere–asthenosphere boundary offset and stepped Moho possibility beneath the Talesh Mts next to the South Caspian Basin boundary.

Publisher

Wiley

Subject

Geochemistry and Petrology,Geophysics

Reference81 articles.

1. Evolution of the stress field at the junction of Talesh – Alborz – Central Iran during the past 5 Ma: Implications for the tectonics of NW Iran

2. Zagros orogeny: a subduction-dominated process

3. Normalized full gradient of gravity anomaly method and its application to the Mobrun sulfide body, Canada;Aghajani H.;World Applied Sciences Journal,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3