A hybrid solver based on the integral equation method and vector finite-element method for 3D controlled-source electromagnetic method modeling

Author:

Liu Rong1,Guo Rongwen1ORCID,Liu Jianxin1ORCID,Ma Changying1,Guo Zhenwei1ORCID

Affiliation:

1. Central South University, School of Geosciences and Info-Physics, Human Key Laboratory of Nonferrous Resources and Geological Hazards Exploration, and Central South University, Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring Ministry of Education, Changsha 410083, China..

Abstract

The integral equation method (IEM) and differential equation methods have been widely applied to provide numerical solutions of the electromagnetic (EM) fields caused by inhomogeneity for the controlled-source EM method. IEM has a bounded computational domain and has been well-known for its efficiency, whereas differential equation methods are commonly used for complex geologic models. To use the advantages of the two types of approaches, a hybrid method is developed based on the combination of IEM and the edge-based finite-element method (vector FEM). In the hybrid scheme, Maxwell’s differential equations of the secondary electric fields in the frequency domain are derived for a volume with boundary placed slightly away from the inhomogeneity. The vector FEM is applied to solve Maxwell’s differential equations, and a system of linear equations for the secondary electric fields can be derived by the minimum theorem. The secondary electric fields on the boundary are represented by IEM in terms of the secondary electric fields inside the inhomogeneity. The linear equations from substituting the boundary values into the vector FEM linear equations then can be solved to obtain the secondary electric fields inside the inhomogeneity. The secondary electric fields at receivers are calculated by IEM based on the secondary electric field solutions inside the inhomogeneity. The hybrid algorithm is verified by comparison of simulated results with earlier works on canonical 3D disc models with a high accuracy. Numerical comparisons with two conventional IEMs demonstrate that the hybrid method is more accurate and efficient for high-conductivity contrast media.

Funder

National Natural Science Foundation of China

Project of Innovation-driven Plan from Central South University

China Postdoctoral Science Foundation

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3