Stress-path-dependent velocities in shales: Impact on 4D seismic interpretation

Author:

Holt Rune M.1ORCID,Bauer Andreas2,Bakk Audun3

Affiliation:

1. NTNU (Norwegian University of Science and Technology), Trondheim, Norway..

2. NTNU (Norwegian University of Science and Technology), Trondheim, Norway and SINTEF, Trondheim, Norway..

3. SINTEF, Trondheim, Norway..

Abstract

Overburden stresses and pore pressure are altered by depletion or inflation of a subsurface reservoir, leading to seismic traveltime and reflectivity changes that may be interpreted as footprints of reservoir drainage or injection. Our objective is to contribute to the quantification of expected 4D seismic time shifts and reflectivities by understanding how overburden stresses and strains change and how seismic velocities depend on these stress and strain changes. The stress sensitivity of ultrasonic velocities has been obtained from controlled laboratory experiments in which field shale cores are brought to in situ conditions and then probed with different stress paths, i.e., different ratios between the horizontal and vertical stress change. The tests are performed in undrained conditions, and pore-pressure changes are recorded. The experiments indicate that the velocity and pore-pressure changes depend linearly on the stress path. The latter is a verification of the applicability of Skempton’s law from soil mechanics for shales. Overburden stress paths are, through analytical and numerical geomechanical modeling, seen to depend on the aspect ratio of the depleting or inflating zone, on the elastic contrast between the overburden and the reservoir, and on the reservoir tilt. By combining laboratory data and simulated overburden stress paths, the response of in situ wave velocities to reservoir pore-pressure change can be estimated. The calculated in situ stress dependence of the vertical P-wave velocity shows significant dependence on stress path. The strain sensitivity, expressed by the dilation parameter, or [Formula: see text] factor, increases strongly with the stress path. This expresses the explicit sensitivity of [Formula: see text] to vertical in situ strain. The results also indicate that the time-lapse overburden response may be significantly influenced by pore-pressure changes in the overburden.

Funder

PETROMAKS 2 Program

ROSE Program

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3